Introduction to Quant Trading
Quantitative trading leverages mathematical models, algorithms, and market data to execute trades systematically. This guide explores how to:
- Create authenticated signatures for API requests.
- Fetch real-time ticker data (e.g., BTC/USDT prices).
- Retrieve historical Kline (candlestick) data from OKEx.
1. Creating a Trade Signature
Why Signatures Matter
APIs often require cryptographic signatures to verify request authenticity. Below is a Python function to generate an MD5 signature:
import hashlib
def create_trade_sign(params, api_key, secret_key):
"""
Generate an MD5 signature for API authentication.
:param params: Request parameters (e.g., {'symbol': 'btc_usdt'})
:param api_key: Your exchange API key.
:param secret_key: Your exchange secret key.
:return: MD5 hash as a hexadecimal string.
"""
sign = ''
for key in sorted(params.keys()):
sign += '&' + key + '=' + str(params[key])
return hashlib.md5(sign.encode('utf-8')).hexdigest()Example Usage
params = {'symbol': 'btc_usdt'}
api_key = "your_api_key_here"
secret_key = "your_secret_key_here"
print(create_trade_sign(params, api_key, secret_key))👉 Learn more about API security best practices
2. Fetching Ticker Data from OKEx
Code Implementation
import pandas as pd
def get_ticker_from_okex(symbol_list):
"""
Fetch ticker data (last price, bid/ask, volume) for given symbols.
:param symbol_list: List of trading pairs (e.g., ['btc_usdt', 'eth_usdt']).
:return: DataFrame with ticker metrics.
"""
df = pd.DataFrame()
base_url = 'https://www.okex.com/api/v1/ticker.do?symbol='
for symbol in symbol_list:
url = base_url + symbol
json_data = get_url_data(url) # Assume get_url_data() fetches JSON
if json_data:
_df = pd.DataFrame(json_data['ticker'], dtype='float')
_df['symbol'] = symbol
df = pd.concat([df, _df], ignore_index=True)
return df[['symbol', 'last', 'buy', 'sell', 'high', 'low', 'vol']]Output Example
| symbol | last | buy | sell | high | low | vol |
|---|---|---|---|---|---|---|
| btc_usdt | 42000 | 41950 | 42010 | 42500 | 41800 | 1200.5 |
3. Retrieving Kline (Candlestick) Data
Python Function
def get_candle_from_okex(symbol, kline_type='1min'):
url = f'https://www.okex.com/api/v1/kline.do?symbol={symbol}&type={kline_type}'
json_data = get_url_data(url)
if json_data:
df = pd.DataFrame(json_data, columns=[
'timestamp', 'Open', 'High', 'Low', 'Close', 'Volume'
])
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms')
return dfSample Data
| timestamp | Open | High | Low | Close | Volume |
|---|---|---|---|---|---|
| 2025-03-17 12:00 | 41900 | 42050 | 41800 | 42000 | 45.2 |
👉 Explore advanced candlestick analysis techniques
FAQs
Q1: Why use MD5 for API signatures?
MD5 ensures data integrity. However, some platforms now use HMAC-SHA256 for enhanced security.
Q2: How often should I fetch ticker data?
For high-frequency strategies, poll every 1–5 seconds. For long-term analysis, hourly/daily updates suffice.
Q3: Can I backtest with Kline data?
Yes! Historical Kline data is ideal for backtesting trading algorithms.
Q4: What’s the rate limit for OKEx’s API?
OKEx allows up to 20 requests per second. Exceeding this may result in temporary bans.
Conclusion
This guide covered essential quant trading tasks:
- API authentication via MD5 signatures.
- Real-time price tracking with ticker data.
- Historical analysis using candlestick datasets.
For further reading, check out our quant trading strategies section.